STRUCTURE DETERMINATION OF AMIKACIN DERIVATIVES MODIFIED BY ENZYMES FROM RESISTANT S. AUREUS STRAINS

Soichiro Toda, Susumu Nakagawa, Takayuki Naito^{*} and Hiroshi Kawaguchi Bristol-Banyu Research Institute, Ltd. Meguro, Tokyo, Japan

Amikacin is known to be refractory to a variety of aminoglycoside-modifying enzymes produced by gram-negative and gram-positive bacteria¹⁾. It has been reported recently^{2~6)} that certain staphylococcal strains can inactivate kanamycin, tobramycin and amikacin. We wish to report the structure determination of amikacin derivatives modified by two resistant strains of *Staphylococcus aureus*, A21978 and A21980⁷⁾.

Amikacin was incubated with an enzyme preparation of *S. aureus* A21978^{*} in the presence of adenosine triphosphate (ATP), affording two modified amikacin derivatives designated MAK-A and MAK-B which showed no antibiotic activity. The crude products were purified by repeating chromatographies on Amberlite CG-50 (NH₄⁺ form) and silica gel columns and finally by preparative TLC.

MAK-A : mp 231~235°C (dec.); Rf 0.49 (S-110)**; $\lambda_{max}^{H_2O}$ 260 nm (ϵ 12,400); PMR (D₂O, ppm from DHO): -0.31 (1H, d, J = 4 Hz, 1"-H), -0.53 (1H, d, J = 4 Hz, 1'-H), -1.29 (1H, d, J = 5.5 Hz, ribose 1-H), -3.34 (1H, s, adenine 8-H), -3.59 (1H, s, adenine 2-H). Anal. Calc'd for C_{32H55}N₁₀O₁₉P·2.5H₂O: C, 40.04; H, 6.30; N, 14.59. Found: C, 39.81; H, 5.98; N, 14.22. MAK-B: mp 269~273°C (dec.); Rf 0.28 (S-110); no UV absorption; PMR (D₂O, ppm from DHO): -0.33 (1H, d, J = 4 Hz, 1"-H), -0.70 (1H, d, J = 4 Hz, 1'-H). Anal. Calc'd. for C_{22H44}N₅O₁₆P·2.5H₂O: C, 37.18; H, 6.95; N, 9.86. Found: C, 37.01, H, 6.86; N, 9.87. MAK-A and B gave positive ninhydrin and Hanes⁸ tests, and liberated amikacin on treatment with alkaline phosphatase of calf intestine. MAK-A was hydrolyzed to amikacin by phosphodiesterase of snake venom, while MAK-B was not. These data suggest that MAK-A is an O-adenylylated amikacin and MAK-B is an O-phosphorylated amikacin. Mild acid hydrolysis of both compounds (4N HC1, 85°C, 4 hours) gave ninhydrin positive spots on TLC corresponding

* Another strain, S. aureus A21980, gave the identical inactivation products MAK-A and MAK-B. The detailed inactivation procedures used by Dr. Julian Davies, who kindly provided the crude preparations of inactivated amikacins, are given in ref. 7.

** Silica gel TLC: CHCl₃ - CH₃OH - 28% NH₄OH - H₂O (4:1:2:1)

			Chemical shift (ppm downfield from TMS)						
		Amikacin		MAK-A		MAK-B			
Carbon		base	+ DC1	base	+ DC1	base	+ DC1	ATP. 4Na	
(DOS)	C-1	50.4	49.5	50.4	49.6	50.4	49.6		
	C-2	35.1	30.9	32.4	30.9	31.9	30.9		
	C-3	49.4	48.7	49.3	48.7	49.1	48.4		
	C-4	87.6	79.8	87.0	80.0	85.4	79.9		
	C-5	75.4	73.2	75.4	73.4	75.1	72.8		
	C-6	81.2	81.2	81.4	81.0	81.1	81.0		
(6-AG)	C-1'	99.2	96.2	99.3	96.3	98.9	95.4		
	C-2'	72.7	71.7	72.3	71.6	72.0 ^a	71.2 ^j **		
	C-3'	73.7	73.1	72.9 ^a	72.2 ^{e**}	76.3 ^{i*}	78.2 ^{k*}		
	C-4'	71.8	71.7	75.9 ^b *	75.5 ^b * 68.6 ^f **	72.0 ^a	71.1 ¹ **		
	C-5'	73.7	69.5	72.3 ^a	68.6 [±] **	71.4	69.3		
	C-6'	42.4	41.2	41.5	40.9	41.5	41.1		
(3-AG)	C-1"	100.3	98.7	99.6	98.8	99.1	98.7		
	C-2"	72.5	68.8	71.1	68.8	70.0	68.8		
	C-3"	54.9	56.2	55.0	56.1	55.3	56.2		
	C-4"	70.1	66.4	69.9	66.3	68.9	66.3		
	C-5"	72.8	72.7	72.9	72.8	72.8	72.8		
	C-6"	61.2	60.7	61.1	60.5	60.9	60.6		
(L-AHBA)	C=0	177.2	176.1	176.3	176.3	176.2	176.3		
	C-α	70.7	70.5	70.6	70.4	70.4	70.4		
	C-β	36.5	31.6	35.0	31.6	34.4	31.6		
	C-γ	38.1	37.9	37.8	37.8	37.7	37.8		
(Ribose)	C-1'			88.1	89.1			88.1	
	C-2'			74.9	75.3			75.3	
	C-3'			70.6	71.0			70.9	
	C-4'			84.4 ^{c*}	* 84.8 ^g **			84.4 ^{m**}	
	C-5'			66.1 ^d *	66.0 ^h *			66.2 ^{n*}	
(Adenine)	C-2			153.7	ი			153.3	
	C-4			149.7	ο			149.1	
	C-5			119.3	0			118.8	
	C-6			156.2	0			155.6	
	C-8			140.7	0			140.4	
					-				

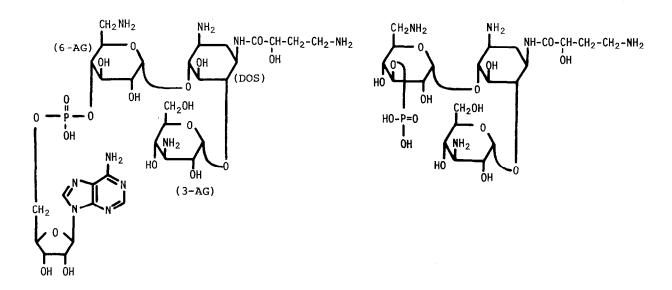
Table 1 ${}^{13}C$ Chemical shifts of modified amikacins, MAK-A and MAK-B (in D₂O, Varian FT-80)

a) unresolved doublet.

b-n) doublet with the following J_{C-P}: (b) 5.8 Hz, (c) 8.0 Hz, (d) 5.2 Hz, (e) 2.8 Hz,
(f) 3.4 Hz, (g) 8.8 Hz, (h) 5.0 Hz, (i) 4.0 Hz, (j) 2.4 Hz, (k) 4.6 Hz, (l) 4.8 Hz,
(m) ca. 8.0 Hz, (n) ca. 4.0 Hz.

- o) distinct resonances not observed.
- *) ${}^{2}J$ (${}^{13}C {}^{31}P$).
- **) ${}^{3}J$ (${}^{13}C {}^{31}P$).

to 3-amino-3-deoxyglucose (3-AG), 2-deoxystreptamine (DOS) and L-4-amino-2-hydroxybutyric acid (L-AHBA), but only a faint spot for 6-amino-6-deoxyglucose (6-AG).


The ¹³C NMR spectra of MAK-A and B were measured under basic and acidic conditions. The assignment of the chemical shifts of these compounds (Table 1) was made on the basis of comparisons with those of amikacin⁹) and adenosine triphosphate (ATP), taking into consideration the β -carbon shift on protonation of amino groups and the multiplicity of resonance by ¹³C - ³¹P coupling¹⁰.

The presence of the adenosine moiety in MAK-A was indicated by the 13 C spectrum which showed five outstanding signals due to the adenine nucleus in the range of 119.3 ~ 156.2 ppm and five peaks for the ribose moiety at 66.1 ~ 88.1 ppm (three singlets and two doublets coupled with phosphorus). The carbon shifts due to the DOS, 3-AG and L-AHBA moieties of MAK-A and B, which appeared as single lines, are in good agreement with those of amikacin. This fact, coupled with the results of acid hydrolysis, indicates that modifications occurred on the 6-AG moiety of the compounds. In addition, the readily discernible C-1' and C-6' signals of the 6-AG moieties of MAK-A and B resonated as singlets at 99.3 and 98.9 ppm and at 41.5 and 41.5 ppm, respectively, indicating that the adenylyl or phosphoryl group should be on the C-3' or C-4' of the 6-AG moiety in the modified compounds.

In the ¹³C-NMR spectrum of MAK-A measured under a protonated condition, three well-resolved doublets appeared at 68.6, 72.2 and 75.5 ppm (coupling with phosphorus). The doublet at the most upfield region (68.6 ppm) was assigned to the C-5' of 6-AG moiety (β -shift on protonation). The splitting of C-5' signal (${}^{3}J_{C-p} = 3.4$ Hz) and the sharp singlet of C-2' at 71.6 ppm indicated that the site of adenylylation in MAK-A is not on the C-3' but on the C-4' hydroxyl group. Accordingly, two doublets at 75.5 ppm (${}^{2}J_{C-p} = 5.8$ Hz) and 72.2 ppm (${}^{3}J_{C-p} = 2.8$ Hz) were reasonably assigned to the C-4' and C-3' signals, which showed a downfield shift by 3.8 ppm and a upfield shift by 0.9 ppm, respectively, compared with that of amikacin.

In the spectrum of MAK-B taken under acidic condition, the C-5' signal appeared as a singlet at 69.3 ppm, which was nearly the same as that of amikacin (69.5 ppm). Therefore, the C-4' hydroxyl group should not be phosphorylated and the site of phosphorylation in MAK-B is on the C-3' hydroxyl group. The doublet at 78.2 ppm $(^{2}J_{C-p} = 4.6 \text{ Hz})$ was attributed to the C-3' signal which was deshielded by 5.1 ppm from that of amikacin. Two doublets at 71.2 ppm $(^{3}J_{C-p} = 2.4 \text{ Hz})$ and 71.1 ppm $(^{3}J_{C-p} = 4.8 \text{ Hz})$ were ascribed to the C-2' and C-4', which were shifted upfield by 0.5 ppm and 0.6 ppm, respectively, from that of amikacin.

The structures of enzymatically modified amikacin derivatives, MAK-A and MAK-B, are thus determined to be 4'-O-adenylylamikacin and 3'-O-phosphorylamikacin, respectively, as shown on the next page.

MAK-A (4'-O-adenylylamikacin)

MAK-B (3'-O-phosphorylamikacin)

Acknowledgement : The authors wish to thank Mr. K. Aoki of Nippon Electric Varian Ltd. for the measurement of 13 C NMR spectra.

REFERENCES

- 1) K. E. Price, M. D. Defuria and T. A. Pursiano, J. Infect. Dis., <u>134</u>, S249 (1976).
- 2) P. Santanam and F. H. Kayser, J. Infect. Dis., <u>134</u>, S33 (1976).
- F. Le Goffic, A. Martel, M. L. Capmau, B. Baca, P. Goebel, H. Chardon, C. J. Soussy, J. Duval and D. H. Bouanchaud, Antimicrob. Agents & Chemoth., <u>10</u>, 258 (1976).
- 4) J. E. Dowding, Antimicrob. Agents & Chemoth., 11, 47 (1977).
- 5) P. Courvalin and J. Davies, Antimicrob. Agents & Chemoth., 11, 619 (1977).
- 6) F. Le Goffic, A. Martel, N. Moreau, M. L. Capmau, C. J. Soussy and J. Duval, Antimicrob. Agents & Chemoth., 12, 26 (1977).
- 7) K. Crossley, T-S. R. Huang and J. Davies, In preparation.
- 8) C. S. Hanes and F. A. Isherwood, Nature, 164, 1107 (1949).
- 9) S. Toda, S. Nakagawa, T. Naito and H. Kawaguchi, Tetrahedron Letters, to be published.
- 10) H. H. Mantsch and I. C. P. Smith, Biochem. Biophys. Res. Comm., 46, 308 (1972).

(Received in Japan 3 July 1978; received in UK for publication 17 August 1978)